# ASYMMETRIC SYNTHESIS VII ${ }^{1}$ : ENANTIOSPECIFIC PREPARATION OF $\beta$-AMINOALCOHOLS FROM THE N-CYANOMETHYL-4-PHENYL-l,3-OXAZOLIDINE SYNTHON 

 José L. MARCO, Jacques ROYER and Henri-Philippe HUSSON*Institut de Chimie des Substances Naturelles du CNRS, 91190 Gif-sur-Yvette (France)

## Abstract :

(-)-N-cyanomethyl-4-phenyl-1,3-oxazolidine 1 has been investigated as chiral template for the enantiospecific synthesis of $B$-aminoalcohols. (-)-2(R)-hydroxy-3(S)-nonylanine 5a was chosen as a target molecule of the new method.

In continuation of our current work on the possibility of using chiral synthons derived from (-)-(R)-phenylglycinol ${ }^{1-3}$ for the asymmetric preparation of nitrogencontaining natural products we now report a new approach for the synthesis of $\beta$-aminoalcohols. Due to the biological interest of many compounds containing this functionality, various methods have appeared in the literature for their preparation in optically active form.

For a long time the most widely used technique was resolution of racemic intermediates. More recent approaches have involved classical chemical transformations of chiral $\alpha$-hydroxy epoxides ${ }^{4}$, the asymmetric reduction of $\alpha$-aminoketones ${ }^{5}$ and the reduction of chiral $\alpha$-aminoalkyl arylketones ${ }^{6}$. In connection with the promising synthetic potential of chiral aliphatic $\alpha$-aminoketones ${ }^{7}$, it seemed quite interesting to investigate $\alpha$-aminonitriles as intermediates for their preparation. Indeed, we have recently demonstrated ${ }^{3}$ that a large variety of optically pure $\alpha$-aminonitriles could be obtained from the readily available $N$-cyanomethyl-4-phenyl-1,3-oxazolidine synthon 1 .

It has been shown that organolithium reagents gave addition reactions to the nitrile group of the $\alpha$-aminonitrile function whereas Grignard reagents led to substitution ${ }^{8}$. However these organometallics are also basic reagents which could afford a carbanion responsible for the racemization of the optically active centers and the formation of byproducts. Nevertheless, we have found that the addition of 1.1 equivalent of methyllithium to the $\alpha$-aminonitrile $\underline{2}$ occurred largely as it does with simple nitriles and that optical purity was preserved.


Reagents: (i): LDA-HMPT, THF, $-78^{\circ} \mathrm{C}$. (ii): ${ }^{n} \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}, 1 \mathrm{~h}$. (iii): $\mathrm{CH}_{3} \mathrm{Li}$ (1.l equiv., 1.6 M in ether), $\mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 20 \% \mathrm{HCl}, \mathrm{rt}, 3 \mathrm{~h}$. (iv) : $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{rt}, 3 \mathrm{~h}$. (v) : $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{rt}, 1 \mathrm{~atm} ., 12 \mathrm{~h} .(\mathrm{vi}): \mathrm{PhCOCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, r t$, 30 min. (vii) : conc. $\mathrm{HCl}, 2-\mathrm{propanol}, \Delta, 24 \mathrm{~h}$.

As a target molecule we chose 2-hydroxy-3-nonylamines ${ }^{9}$ which are part of the immuno-potentiator erythro-9-(2-hydroxy-3-nonyl) hypoxanthine ${ }^{10}$. Alkylation of the anion derived from $1^{3}$ with $\underline{n}$-hexyl bromide afforded a diastereomeric mixture ( $74: 26$ ratio) from which the major $S$ isomer $\underline{2}^{11}$ was easily separated in its pure form by flash chromatography ( $\mathrm{SiO}_{2}$, hexane-Ac0Et, $90: 10 ; Y: 53 \%$ ). Treatment of a THF solution of 2 with methyllithium ( 1.1 equivalent, 1.6 M ether) followed by acid hydrolysis ( $20 \%$ aqueous HCl ) led in a one pot reaction to the formation of $\underline{3}^{12}$ as a mixture of $\alpha$-and $\beta$-anomers ( $90: 10$ ratio respectively, determined by ${ }^{13}$ C NMR analysis ; overall yield $35 \%$ ). Compound 3 likely comes from cyclisation of the hydroxy ketone formed by the acid hydrolysis of the intermediate imine with simultaneous cleavage of the oxazolidine ring with loss of $\mathrm{CH}_{2} 0$. The assigned structure as depicted for 3 was based on the assumption that this compound exists in the most stable chair conformation with equatorial substituents and on its following conversion to the $\beta$-aminoalcohols $\underline{5}$ having the $3(S)$ absolute configuration of the starting material 2 preserved (vide infra). Indeed, $\mathrm{NaBH}_{4}-\mathrm{CH}_{3} \mathrm{OH}$ reduction of compound $\underline{3}$ gave the alcohols $4 \underline{a}$ and $\underline{4 b}$ in nearly quantitative yield as an inseparable mixture of erythro and threo isomers respectively. Diastereomeric excess ( $60 \%$ ) was determined in the crude product by integration of the ${ }^{13} \mathrm{C}$ NMR spectrum ${ }^{13}$. The stereochemical outcome of the reduction is in agreeement with previous results for methyl ketones ${ }^{14}$. The chiral appendage
of the mixture 4 a and 4 b was quantitatively removed by hydrogenolysis. No separation of the diastereomers $\underline{5 a}$ and $5 b$ could be achieved; they were in turn transformed into the benzamides 6 a and 6b. The major isomer 6a was crystallized from hexane-ethyl acetate ( $96 \%$ pure as determined by HPLC analysis). Analytically pure 6 a was obtained by preparative HPLC [normal phase, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH} 95: 5$; mp $133-135^{\circ} \mathrm{C} ;(\alpha)_{D}^{25}-45.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.5\right)$ ]. The facile purification of $\beta$-aminoalcohols as their benzamides is interesting to note since the free primary amine derivatives are quite unstable and difficult to handle.

Finally, acid hydrolysis of $\frac{6 a}{}$ afforded $5 a \quad\left[0 i 1,(\alpha)_{D}^{25}-14.2^{\circ}\right.$ (EtOH, c 1.2)] which proved to be identical to $2(R)$-hydroxy-3(S)-nonylamine ${ }^{4}$. The optical purity of 5 a was confirmed by preparation of Mosher's amide ${ }^{15}$ (ee $\geqslant 98 \%$, checked by $\mathrm{l}_{\mathrm{H}}$ NMR and HPLC analysis).

The most notable feature of the chiral synthesis outlined herein is that the $\beta$-aminoalcohols 5 a and 5 b were formed with complete retention of configuration at the $\alpha$ position of the amine function showing that addition of methyllithium and acid hydrolysis occurred without racemization. The same observations have been recently made in the $\alpha$-aminoacid series 16,17 .

On consideration that enantiomeric (+) synthon 1 is also available, the present strategy can be extended to the synthesis of enantiomeric $B$-aminoalcohols.

Acknowledgements : We would like to thank Dr. BESSODES for providing us with an authentic sample of (-)-2(R)-hydroxy-3(S)-nonylamine.

## REFERENCES AND NOTES

1 Part. VI : D. S. Grierson, J. Royer, L. Guerrier and H.-P. Husson, submitted for publication.

2 L. Guerrier, J. Royer, D.S. Grierson and H.-P. Husson, J. Am. Chem. Soc., 1983, 105, 7754.

3 J. L. Marco, J. Royer and H.-P. Husson, Tetrahedron Lett., 1985, 26, 3567.

4 M. Bessodes, E. Abushanab and K. Antonakis, Tetrahedron Lett., 1984, 25, 5899.

5 A. S. Angeloni, S. Marzocchi and G. Scapini, Gazzetta Chim. Ital., 1977, 107, 421.

6 T. F. Buckley and H. Rapoport, J. Am. Chem. Soc., 1981, 103, 6157.

7 C. G. Knudsen and H. Rapoport, J. Org. Chem., 1983, 48, 2260.

8 G. Chauvière, B. Tchoubar and Z. Welwart, Bull. Soc. Chim. Fr., 1963, 1428.

9 For a recent synthesis of the four stereomers of 2-hiydroxy-3-nonylamine see ref. 4.

10 B. Susskind, J. W. Hadden and R. B. Faanes, Int. J. Immunopharmacol., 1982, 4, 219.

11 All new compounds showed satisfactory analytical and spectroscopic data.
12 3 : oil ; IR (neat) : $3400-3000 \mathrm{~cm}^{-1}$, no carbonyl absorption; MS m/z:CI $278(M+1)$, EI m/z (relative intensity) 246 ( $\mathrm{M}-31,18$ ), 234 ( 72 ), 168 (14), 164 (18), 148 (18), 146 (14), 121 (36), 114 (100), 106 (27), 104 (91); anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}$, C $73.64, \mathrm{H} 9.74, \mathrm{~N} 5.05$, found C 73.53 , H $9.63, \mathrm{~N} 5.12 ;{ }^{13} \mathrm{C}$ NMR ( $50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) б (ppm) : 139.9-128.6-128.0-127.1 (aromatic), 95.3 (s), 66.6 (t), 63.8 (d), 61.4 ( d ), 31.7 ( t$), 30.6$ ( t$), 29.3$ ( t$), 26.1(\mathrm{t}), 22.5(\mathrm{t}), 23.4$ ( q$), 14.0(\mathrm{q})$. Minor signals for the $B$ anomer at : $67.5(t), 65.2(d), 32.8(t), 29.1(t), 25.7(t)$.
$134 \underline{a}$ and $4 b$ : oil ; IR (neat) : $3500-3000,2900,1415,1050 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR ( 50.3 MHz , $\mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm}$ : erythro: 142.1-128.6-127.6-127.4 (aromatic), 67.3 ( t ), 67.0 (d), 62.5 (d), 59.7 (d), 31.7 ( $t$ ), 29.7 ( $t$ ), 29.3 ( $t$ ), 26.4 ( $t$ ), 22.6 ( $t$ ), $17.9(\mathrm{q}), 14.0(\mathrm{q})$. Threo : $69.7(\mathrm{t}), 64.4(\mathrm{~d}), 32.2(\mathrm{t}), 25.5(\mathrm{t}), 10.1(\mathrm{q}) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity) : 248 (M-31, 40), 234 (100), 218 (9), 204 (11), 121 (30), 114 (91), 91 (27). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2}: \mathrm{C}, 73.03, \mathrm{H}, 10.38, \mathrm{~N}, 5.01$. Found : C, 72.92, H, 10.43, N, 5.34.

14 J. D. Morrison and H. S. Mosher : "Asymmetric Organic Reactions", Prentice-Hall, New Jersey, 1971, 94.
J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
P. J. Maurer, C. G. Knudsen, A. D. Palkowitz and H. Rapoport, J. Org. Chem., 1985, 50, 325 .

17 K. Shiosaki and H. Rapoport, J. Org. Chem., 1985, 50, 1229.
(Received in France 25 September 1985)

